Skip navigation

Ezequiel A. Di Paolo

Ezequiel A. Di Paolo is Research Professor at the University of the Basque Country. 

Titles by This Editor

Evolutionary robotics (ER) aims to apply evolutionary computation techniques to the design of both real and simulated autonomous robots. The Horizons of Evolutionary Robotics offers an authoritative overview of this rapidly developing field, presenting state-of-the-art research by leading scholars. The result is a lively, expansive survey that will be of interest to computer scientists, robotics engineers, neuroscientists, and philosophers.

The contributors discuss incorporating principles from neuroscience into ER; dynamical analysis of evolved agents; constructing appropriate evolutionary pathways; spatial cognition; the coevolution of robot brains and bodies; group behavior; the evolution of communication; translating evolved behavior into design principles; the development of an evolutionary robotics–based methodology for shedding light on neural processes; an incremental approach to complex tasks; and the notion of “mindless intelligence”—complex processes from immune systems to social networks—as a way forward for artificial intelligence.

Contributors
Christos Ampatzis, Randall D. Beer, Josh Bongard, Joachim de Greeff, Ezequiel A. Di Paolo, Marco Dorigo, Dario Floreano, Inman Harvey, Sabine Hauert, Phil Husbands, Laurent Keller, Michail Maniadakis, Orazio Miglino, Sara Mitri, Renan Moioli, Stefano Nolfi, Michael O’Shea, Rainer W. Paine, Andy Philippides, Jordan B. Pollack, Michela Ponticorvo, Yoon-Sik Shim, Jun Tani, Vito Trianni, Elio Tuci, Patricia A. Vargas, Eric D. Vaughan

Toward a New Paradigm for Cognitive Science

This book presents the framework for a new, comprehensive approach to cognitive science. The proposed paradigm, enaction, offers an alternative to cognitive science's classical, first-generation Computational Theory of Mind (CTM). Enaction, first articulated by Varela, Thompson, and Rosch in The Embodied Mind (MIT Press, 1991), breaks from CTM’s formalisms of information processing and symbolic representations to view cognition as grounded in the sensorimotor dynamics of the interactions between a living organism and its environment. A living organism enacts the world it lives in; its embodied action in the world constitutes its perception and thereby grounds its cognition. Enaction offers a range of perspectives on this exciting new approach to embodied cognitive science.

Some chapters offer manifestos for the enaction paradigm; others address specific areas of research, including artificial intelligence, developmental psychology, neuroscience, language, phenomenology, and culture and cognition. Three themes emerge as testimony to the originality and specificity of enaction as a paradigm: the relation between first-person lived experience and third-person natural science; the ambition to provide an encompassing framework applicable at levels from the cell to society; and the difficulties of reflexivity. Taken together, the chapters offer nothing less than the framework for a far-reaching renewal of cognitive science.

Contributors: Renaud Barbaras, Didier Bottineau, Giovanna Colombetti, Diego Cosmelli, Hanne De Jaegher, Ezequiel A. Di Paolo. Andreas K. Engel, Olivier Gapenne, Véronique Havelange, Edwin Hutchins, Michel Le Van Quyen, Rafael E. Núñez, Marieke Rohde, Benny Shanon, Maxine Sheets-Johnstone, Adam Sheya, Linda B. Smith, John Stewart, Evan Thompson