Skip navigation

Gregory Piatetsky-Shapiro

Gregory Piatetsky-Shapiro is Senior Member of Technical Staff and Principal Investigator of the Knowledge Discovery Project at GTE Laboratories.

Titles by This Editor


Advances in Knowledge Discovery and Data Mining brings together the latest research—in statistics, databases, machine learning, and artificial intelligence —that are part of the exciting and rapidly growing field of Knowledge Discovery and Data Mining. Topics covered include fundamental issues, classification and clustering, trend and deviation analysis, dependency modeling, integrated discovery systems, next generation database systems, and application case studies. The contributors include leading researchers and practitioners from academia, government laboratories, and private industry.

The last decade has seen an explosive growth in the generation and collection of data. Advances in data collection, widespread use of bar codes for most commercial products, and the computerization of many business and government transactions have flooded us with data and generated an urgent need for new techniques and tools that can intelligently and automatically assist in transforming this data into useful knowledge. This book is a timely and comprehensive overview of the new generation of techniques and tools for knowledge discovery in data.

Distributed for AAAI Press

Knowledge Discovery in Databases brings together current research on the exciting problem of discovering useful and interesting knowledge in databases. It spans many different approaches to discovery, including inductive learning, bayesian statistics, semantic query optimization, knowledge acquisition for expert systems, information theory, and fuzzy 1 sets.

The rapid growth in the number and size of databases creates a need for tools and techniques for intelligent data understanding. Relationships and patterns in data may enable a manufacturer to discover the cause of a persistent disk failure or the reason for consumer complaints. But today's databases hide their secrets beneath a cover of overwhelming detail. The task of uncovering these secrets is called "discovery in databases." This loosely defined subfield of machine learning is concerned with discovery from large amounts of possible uncertain data. Its techniques range from statistics to the use of domain knowledge to control search.

Following an overview of knowledge discovery in databases, thirty technical chapters are grouped in seven parts which cover discovery of quantitative laws, discovery of qualitative laws, using knowledge in discovery, data summarization, domain?specific discovery methods, integrated and multi-paradigm systems, and methodology and application issues. An important thread running through the collection is reliance on domain knowledge, starting with general methods and progressing to specialized methods where domain knowledge is built in.