Skip navigation

Joel L. Davis

Joel L. Davis is Program Officer, Cognitive, Neural, and Biomolecular Science and Technology Division, Office of Naval Research.

Titles by This Editor

A Model System for Computational Neuroscience

Computational neuroscientists have recently turned to modeling olfactory structures because these are likely to have the same functional properties as currently popular network designs for perception and memory. This book provides a useful survey of current work on olfactory system circuitry, including connections of this system to brain structures involved in cognition and memory, and describes the computational models of olfactory processing that have been developed to date.

Large-Scale Neuronal Theories of the Brain brings together thirteen original contributions by some of the top scientists working in neuroscience today. It presents models and theories that will most likely shape and influence the way we think about the brain, the mind, and interactions between the two in the years to come. Chapters consider global theories of the brain from the bottom up—providing theories that are based on real nerve cells, their firing properties, and their anatomical connections.

Molecular, Cellular, and Functional Aspects

Synaptic Plasticity presents an up-to-date overview of the current status of research on the full scope of synaptic plasticity, including synaptic remodeling in response to damage, long-term depression and long-term potentiation, and learning and memory.The contributions are written by leading experts in the field and cover approaches from biochemical, anatomical, physiological, behavioral, and computational levels.

The goal of neurotechnology is to confer the performance advantages of animal systems on robotic machines. Biomimetic robots differ from traditional robots in that they are agile, relatively cheap, and able to deal with real-world environments. The engineering of these robots requires a thorough understanding of the biological systems on which they are based, at both the biomechanical and physiological levels.

The neurobiology and psychology of attention have much to learn from each other. Neurobiologists recognize that responses in sensory cortex depend on the behavioral relevance of a stimulus, but have few ways to study how perception changes as a result. Psychologists have the conceptual and methodological tools to do just that, but are confounded by the multiple interpretations and theoretical ambiguities. This book attempts to bridge the two fields and to derive a comprehensive theory of attention from both neurobiological and psychological data.

Recent years have seen a remarkable expansion of knowledge about the anatomical organization of the part of the brain known as the basal ganglia, the signal processing that occurs in these structures, and the many relations both to molecular mechanisms and to cognitive functions. This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models.