Skip navigation

John H. Holland

John H. Holland is Professor of Psychology and Professor of Computer Science and Engineering at the University of Michigan; he is also Trustee and External Professor at the Santa Fe Institute. He is the author of Hidden Order: How Adaptation Builds Complexity and other books.

Titles by This Author

Building Blocks for Complex Adaptive Systems

Complex adaptive systems (cas), including ecosystems, governments, biological cells, and markets, are characterized by intricate hierarchical arrangements of boundaries and signals. In ecosystems, for example, niches act as semi-permeable boundaries, and smells and visual patterns serve as signals; governments have departmental hierarchies with memoranda acting as signals; and so it is with other cas. Despite a wealth of data and descriptions concerning different cas, there remain many unanswered questions about "steering" these systems. In Signals and Boundaries, John Holland argues that understanding the origin of the intricate signal/border hierarchies of these systems is the key to answering such questions. He develops an overarching framework for comparing and steering cas through the mechanisms that generate their signal/boundary hierarchies.

Holland lays out a path for developing the framework that emphasizes agents, niches, theory, and mathematical models. He discusses, among other topics, theory construction; signal-processing agents; networks as representations of signal/boundary interaction; adaptation; recombination and reproduction; the use of tagged urn models (adapted from elementary probability theory) to represent boundary hierarchies; finitely generated systems as a way to tie the models examined into a single framework; the framework itself, illustrated by a simple finitely generated version of the development of a multi-celled organism; and Markov processes.

An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence

Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications.

In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics.

Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.

Processes Of Inference

Two psychologists, a computer scientist, and a philosopher have collaborated to present a framework for understanding processes of inductive reasoning and learning in organisms and machines. Theirs is the first major effort to bring the ideas of several disciplines to bear on a subject that has been a topic of investigation since the time of Socrates. The result is an integrated account that treats problem solving and induction in terms of ruleĀ­based mental models.

John Holland is Professor of Electrical Engineering at Michigan University. Keith Holyoak is Professor of Psychology at the University of California, Los Angeles. Richard Nisbett is Professor of Psychology at the University of Michigan and Paul Thagard is Research Scientist at Princeton University's Cognitive Science Laboratory Induction is included in the Computational Models of Cognition and Perception Series. A Bradford Book.