Skip navigation

Computational Molecular Biology

An Introduction

Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology.

Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules.

An Introduction to Molecular Biology

Recent research in molecular biology has produced a remarkably detailed understanding of how living things operate. Becoming conversant with the intricacies of molecular biology and its extensive technical vocabulary can be a challenge, though, as introductory materials often seem more like a barrier than an invitation to the study of life.

A Survey of Practical Models, Algorithms, and Numerical Methods

There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis.