Skip navigation

Computational Neuroscience

The event-related potential (ERP) technique, in which neural responses to specific events are extracted from the EEG, provides a powerful noninvasive tool for exploring the human brain. This volume describes practical methods for ERP research along with the underlying theoretical rationale. It offers researchers and students an essential guide to designing, conducting, and analyzing ERP experiments. This second edition has been completely updated, with additional material, new chapters, and more accessible explanations.

From Laboratory to Theory

Vision is one of the most active areas in biomedical research, and visual psychophysical techniques are a foundational methodology for this research enterprise. Visual psychophysics, which studies the relationship between the physical world and human behavior, is a classical field of study that has widespread applications in modern vision science. Bridging the gap between theory and practice, this textbook provides a comprehensive treatment of visual psychophysics, teaching not only basic techniques but also sophisticated data analysis methodologies and theoretical approaches.

Computational and Mathematical Modeling of Neural Systems

Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.

Computation, Representation, and Dynamics in Neurobiological Systems

For years, researchers have used the theoretical tools of engineering to understand neural systems, but much of this work has been conducted in relative isolation. In Neural Engineering, Chris Eliasmith and Charles Anderson provide a synthesis of the disparate approaches current in computational neuroscience, incorporating ideas from neural coding, neural computation, physiology, communications theory, control theory, dynamics, and probability theory. This synthesis, they argue, enables novel theoretical and practical insights into the functioning of neural systems.

Understanding the Mind by Simulating the Brain

The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex.