Spreadsheets are used daily by millions of people for tasks that range from organizing a list of addresses to carrying out complex economic simulations. Spreadsheet programs are easy to learn and convenient to use because they have a clear visual model and a simple efficient underlying computational model. Yet although the basic spreadsheet model could be extended, improved, or otherwise experimented with in many ways, there is no coherently designed, reasonably efficient open source spreadsheet implementation that is a suitable platform for such experiments.

The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time.

This book offers students and researchers a guide to distributed algorithms that emphasizes examples and exercises rather than the intricacies of mathematical models. It avoids mathematical argumentation, often a stumbling block for students, teaching algorithmic thought rather than proofs and logic. This approach allows the student to learn a large number of algorithms within a relatively short span of time. Algorithms are explained through brief, informal descriptions, illuminating examples, and practical exercises.

This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of “data science” for using computation to model and interpret data.

Starting from the premise that understanding the foundations of concurrent programming is key to developing distributed computing systems, this book first presents the fundamental theories of concurrent computing and then introduces the programming languages that help develop distributed computing systems at a high level of abstraction. The major theories of concurrent computation—including the π-calculus, the actor model, the join calculus, and mobile ambients—are explained with a focus on how they help design and reason about distributed and mobile computing systems.

The development of the Semantic Web, with machine-readable content, has the potential to revolutionize the World Wide Web and its uses. A Semantic Web Primer provides an introduction and guide to this continuously evolving field, describing its key ideas, languages, and technologies.

This book explores image processing from several perspectives: the creative, the theoretical (mainly mathematical), and the programmatical. It explains the basic principles of image processing, drawing on key concepts and techniques from mathematics, psychology of perception, computer science, and art, and introduces computer programming as a way to get more control over image processing operations. It does so without requiring college-level mathematics or prior programming experience.

C# is an object-oriented programming language that is similar to Java in many respects but more comprehensive and different in most details. This book offers a quick and accessible reference for anyone who wants to know C# in more detail than that provided by a standard textbook. It will be particularly useful for C# learners who are familiar with Java. This second edition has been updated and expanded, reflecting the evolution and extension of the C# programming language. It covers C# versions 3.0 and 4.0 and takes a look ahead at some of the innovations of version 5.0.

This book guides students through an exploration of the idea that thinking might be understood as a form of computation. Students make the connection between thinking and computing by learning to write computer programs for a variety of tasks that require thought, including solving puzzles, understanding natural language, recognizing objects in visual scenes, planning courses of action, and playing strategic games.

In Software Abstractions Daniel Jackson introduces an approach to software design that draws on traditional formal methods but exploits automated tools to find flaws as early as possible. This approach--which Jackson calls “lightweight formal methods” or “agile modeling”--takes from formal specification the idea of a precise and expressive notation based on a tiny core of simple and robust concepts but replaces conventional analysis based on theorem proving with a fully automated analysis that gives designers immediate feedback.