Skip navigation

Mathematics and Physics

Mathematics and Physics

  • Page 2 of 7

Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level.

The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors’ integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen—coauthor of the leading college textbook on the subject—provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems.

Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order (“sorting”); how to solve basic problems that can be modeled in a computer with a mathematical structure called a “graph” (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.

The classical view of concepts in psychology was challenged in the 1970s when experimental evidence showed that concept categories are graded and thus cannot be represented adequately by classical sets. The possibility of using fuzzy set theory and fuzzy logic for representing and dealing with concepts was recognized initially but then virtually abandoned in the early 1980s. In this volume, leading researchers—both psychologists working on concepts and mathematicians working on fuzzy logic—reassess the usefulness of fuzzy logic for the psychology of concepts.

The book begins with two tutorials—one on concepts and the other on fuzzy logic—aimed at making relevant experimental and theoretical issues accessible to researchers in both fields. The contributors then discuss the experiments that led to the rejection of the classical view of concepts; analyze the various arguments against the use of fuzzy logic in the psychology of concepts and show that they are fallacious; review methods based on sound measurement principles for constructing fuzzy sets; introduce formal concept analysis and its capabilities when generalized by using fuzzy logic; consider conceptual combinations; examine lexical concepts; and propose a research program based on cooperation between researchers in the psychology of concepts and fuzzy logic.

A History of Quantum Chemistry

Quantum chemistry--a discipline that is not quite physics, not quite chemistry, and not quite applied mathematics--emerged as a field of study in the 1920s. It was referred to by such terms as mathematical chemistry, subatomic theoretical chemistry, molecular quantum mechanics, and chemical physics until the community agreed on the designation of quantum chemistry. In Neither Physics Nor Chemistry, Kostas Gavroglu and Ana Simões examine the evolution of quantum chemistry into an autonomous discipline, tracing its development from the publication of early papers in the 1920s to the dramatic changes brought about by the use of computers in the 1970s.
The authors focus on the culture that emerged from the creative synthesis of the various traditions of chemistry, physics, and mathematics. They examine the concepts, practices, languages, and institutions of this new culture as well as the people who established it, from such pioneers as Walter Heitler and Fritz London, Linus Pauling, and Robert Sanderson Mulliken, to later figures including Charles Alfred Coulson, Raymond Daudel, and Per-Olov Löwdin. Throughout, the authors emphasize six themes: epistemic aspects and the dilemmas caused by multiple approaches; social issues, including academic politics, the impact of textbooks, and the forging of alliances; the contingencies that arose at every stage of the developments in quantum chemistry; the changes in the field when computers were available to perform the extraordinarily cumbersome calculations required; issues in the philosophy of science; and different styles of reasoning.

The Mathematical Foundations of Music

“Mathematics can be as effortless as humming a tune, if you know the tune,” writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music--a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.

In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself “a composer seduced into mathematics,” Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio.

Additional material can be found at http://www.musimathics.com.

Downloadable instructor resources available for this title: file of figures in the book

Historians of mathematics have devoted considerable attention to Isaac Newton’s work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton’s work that has not been tightly connected to Newton’s actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes’s Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton’s own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton’s works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton’s understanding of method and his mathematical work then reveal themselves through Guicciardini’s careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.

The Mathematical Foundations of Music

Volume 2 of Musimathics continues the story of music engineering begun in volume 1, focusing on the digital and computational domain. Loy goes deeper into the mathematics of music and sound, beginning with digital audio, sampling, and binary numbers, as well as complex numbers and how they simplify representation of musical signals. Chapters cover the Fourier transform, convolution, filtering, resonance, the wave equation, acoustical systems, sound synthesis, the short-time Fourier transform, and the wavelet transform. These subjects provide the theoretical underpinnings of today’s music technology. The examples given are all practical problems in music and audio. Additional material can be found at http://www.musimathics.com.

Downloadable instructor resources available for this title: file of figures in the book

Zhores Alferov's Life in Communist Science

In 2000, Russian scientist Zhores Alferov shared the Nobel Prize for Physics for his discovery of the heterojunction, a semiconductor device the practical applications of which include LEDs, rapid transistors, and the microchip. The Prize was the culmination of a career in Soviet science that spanned the eras of Stalin, Khrushchev, and Gorbachev--and continues today in the postcommunist Russia of Putin and Medvedev. In Lenin’s Laureate, historian Paul Josephson tells the story of Alferov’s life and work and examines the bureaucratic, economic, and ideological obstacles to doing state-sponsored scientific research in the Soviet Union. Lenin and the Bolsheviks built strong institutions for scientific research, rectifying years of neglect under the Czars. Later generations of scientists, including Alferov and his colleagues, reaped the benefits, achieving important breakthroughs: the first nuclear reactor for civilian energy, an early fusion device, and, of course, the Sputnik satellite. Josephson’s account of Alferov’s career reveals the strengths and weaknesses of Soviet science--a schizophrenic environment of cutting-edge research and political interference. Alferov, born into a family of Communist loyalists, joined the party in 1967. He supported Gorbachev’s reforms in the 1980s, but later became frustrated by the recession-plagued postcommunist state’s failure to fund scientific research adequately. An elected member of the Russian parliament since 1995, he uses his prestige as a Nobel laureate to protect Russian science from further cutbacks. Drawing on extensive archival research and the author’s own discussions with Alferov, Lenin’s Laureate offers a unique account of Soviet science, presented against the backdrop of the USSR’s turbulent history from the revolution through perestroika.

The Art of Educated Guessing and Opportunistic Problem Solving

In problem solving, as in street fighting, rules are for fools: do whatever works--don’t just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Robert Reitano’s Introduction to Quantitative Finance offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. This manual provides solutions to the Practice Exercises in the text.

  • Page 2 of 7