Skip navigation

Neuroscience

  •  
  • Page 1 of 49
Adaptivity and Search in Evolving Neural Systems

Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition.

Perceptual Science and the Puzzle of Color in Philosophy

Is color real or illusory, mind independent or mind dependent? Does seeing in color give us a true picture of external reality? The metaphysical debate over color has gone on at least since the seventeenth century. In this book, M. Chirimuuta draws on contemporary perceptual science to address these questions. Her account integrates historical philosophical debates, contemporary work in the philosophy of color, and recent findings in neuroscience and vision science to propose a novel theory of the relationship between color and physical reality.

Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently.

The human brain is often described as the most complex object in the universe. Tens of billions of nerve cells-tiny tree-like structures—make up a massive network with enormous computational power. In this book, Giorgio Ascoli reveals another aspect of the human brain: the stunning beauty of its cellular form. Doing so, he makes a provocative claim about the mind-brain relationship.

Neuroscience, Embodiment, and the Future of Design

Although we spend more than ninety percent of our lives inside buildings, we understand very little about how the built environment affects our behavior, thoughts, emotions, and well-being. We are biological beings whose senses and neural systems have developed over millions of years; it stands to reason that research in the life sciences, particularly neuroscience, can offer compelling insights into the ways our buildings shape our interactions with the world. This expanded understanding can help architects design buildings that support both mind and body.

The vast differences between the brain’s neural circuitry and a computer’s silicon circuitry might suggest that they have nothing in common. In fact, as Dana Ballard argues in this book, computational tools are essential for understanding brain function. Ballard shows that the hierarchical organization of the brain has many parallels with the hierarchical organization of computing; as in silicon computing, the complexities of brain computation can be dramatically simplified when its computation is factored into different levels of abstraction.

A Multidisciplinary Perspective

Over the past decade, an explosion of empirical research in a variety of fields has allowed us to understand human moral sensibility as a sophisticated integration of cognitive, emotional, and motivational mechanisms shaped through evolution, development, and culture. Evolutionary biologists have shown that moral cognition evolved to aid cooperation; developmental psychologists have demonstrated that the elements that underpin morality are in place much earlier than we thought; and social neuroscientists have begun to map brain circuits implicated in moral decision making.

Making Sense of What We See

For many years, researchers have studied visual recognition with objects—single, clean, clear, and isolated objects, presented to subjects at the center of the screen. In our real environment, however, objects do not appear so neatly. Our visual world is a stimulating scenery mess; fragments, colors, occlusions, motions, eye movements, context, and distraction all affect perception. In this volume, pioneering researchers address the visual cognition of scenes from neuroimaging, psychology, modeling, electrophysiology, and computer vision perspectives.

Each edition of this classic reference has proved to be a benchmark in the developing field of cognitive neuroscience. The fifth edition of The Cognitive Neurosciences continues to chart new directions in the study of the biological underpinnings of complex cognitio—the relationship between the structural and physiological mechanisms of the nervous system and the psychological reality of the mind. It offers entirely new material, reflecting recent advances in the field.

Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.

  •  
  • Page 1 of 49