Skip navigation

Science, Technology, and Society

Science, Technology, and Society

  •  
  • Page 1 of 53
Electronic Music Devices and Computer Encodings in China

Technical objects constrain what users do with them. They are not neutral entities but embody information, choices, values, assumptions, or even mistakes embedded by designers. What happens when a technology is designed in one culture and used in another? What happens, for example, when a Chinese user is confronted by Roman-alphabet-embedded interfaces? In this book, Basile Zimmermann examines the relationship between technical objects and culture in contemporary China, drawing on concepts from science and technology studies (STS).

The Sciences of Policy in Britain and America, 1940-1960

During World War II, the Allied military forces faced severe problems integrating equipment, tactics, and logistics into successful combat operations. To help confront these problems, scientists and engineers developed new means of studying which equipment designs would best meet the military’s requirements and how the military could best use the equipment it had on hand. By 1941 they had also begun to gather and analyze data from combat operations to improve military leaders’ ordinary planning activities.

The Story of India's IT Revolution

The rise of the Indian information technology industry is a remarkable economic success story. Software and services exports from India amounted to less than $100 million in 1990, and today come close to $100 billion. But, as Dinesh Sharma explains in The Outsourcer, Indian IT’s success has a long prehistory; it did not begin with software support, or with American firms’ eager recruitment of cheap and plentiful programming labor, or with India’s economic liberalization of the 1990s.

We turn on the lights in our house from a desk in an office miles away. Our refrigerator alerts us to buy milk on the way home. A package of cookies on the supermarket shelf suggests that we buy it, based on past purchases. The cookies themselves are on the shelf because of a “smart” supply chain. When we get home, the thermostat has already adjusted the temperature so that it’s toasty or bracing, whichever we prefer. This is the Internet of Things—a networked world of connected devices, objects, and people.

Digital Transformations of the Sciences and Humanities

In Knowledge Machines, Eric Meyer and Ralph Schroeder argue that digital technologies have fundamentally changed research practices in the sciences, social sciences, and humanities. Meyer and Schroeder show that digital tools and data, used collectively and in distributed mode—which they term e-research—have transformed not just the consumption of knowledge but also the production of knowledge. Digital technologies for research are reshaping how knowledge advances in disciplines that range from physics to literary analysis.

Stanford and the Computer Music Revolution

In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music.

How a Box Changes the Way We Think

We live in a world organized around the container. Standardized twenty- and forty-foot shipping containers carry material goods across oceans and over land; provide shelter, office space, and storage capacity; inspire films, novels, metaphors, and paradigms. Today, TEU (Twenty Foot Equivalent Unit, the official measurement for shipping containers) has become something like a global currency.

Patents, HIV/AIDS, and Race

In The Genealogy of a Gene, Myles Jackson uses the story of the CCR5 gene to investigate the interrelationships among science, technology, and society. Mapping the varied “genealogy” of CCR5—intellectual property, natural selection, Big and Small Pharma, human diversity studies, personalized medicine, ancestry studies, and race and genomics—Jackson links a myriad of diverse topics.

Why Occupations Differ in Their Embrace of New Technology

Why do people who perform largely the same type of work make different technology choices in the workplace? An automotive design engineer working in India, for example, finds advanced information and communication technologies essential, allowing him to work with far-flung colleagues; a structural engineer in California relies more on paper-based technologies for her everyday work; and a software engineer in Silicon Valley operates on multiple digital levels simultaneously all day, continuing after hours on a company-supplied home computer and network connection.

The Cold War period saw a dramatic expansion of state-funded science and technology research. Government and military patronage shaped Cold War technoscientific practices, imposing methods that were project oriented, team based, and subject to national-security restrictions. These changes affected not just the arms race and the space race but also research in agriculture, biomedicine, computer science, ecology, meteorology, and other fields.

  •  
  • Page 1 of 53