Thomas Hardjono

Thomas Hardjono is Technology Director of the MIT Connection Science and the MIT Trust::Data Consortium.

  • Building the New Economy

    Building the New Economy

    Data as Capital

    Alex Pentland, Alexander Lipton, and Thomas Hardjono

    How to empower people and communities with user-centric data ownership, transparent and accountable algorithms, and secure digital transaction systems.

    Data is now central to the economy, government, and health systems—so why are data and the AI systems that interpret the data in the hands of so few people? Building the New Economy calls for us to reinvent the ways that data and artificial intelligence are used in civic and government systems. Arguing that we need to think about data as a new type of capital, the authors show that the use of data trusts and distributed ledgers can empower people and communities with user-centric data ownership, transparent and accountable algorithms, machine learning fairness principles and methodologies, and secure digital transaction systems.

    It's well known that social media generate disinformation and that mobile phone tracking apps threaten privacy. But these same technologies may also enable the creation of more agile systems in which power and decision-making are distributed among stakeholders rather than concentrated in a few hands. Offering both big ideas and detailed blueprints, the authors describe such key building blocks as data cooperatives, tokenized funding mechanisms, and tradecoin architecture. They also discuss technical issues, including how to build an ecosystem of trusted data, the implementation of digital currencies, and interoperability, and consider the evolution of computational law systems.

    • Paperback $35.00
  • Trusted Data, Revised And Expanded Edition

    Trusted Data, Revised And Expanded Edition

    A New Framework for Identity and Data Sharing

    Thomas Hardjono, David L. Shrier, and Alex Pentland

    How to create an Internet of Trusted Data in which insights from data can be extracted without collecting, holding, or revealing the underlying data.

    Trusted Data describes a data architecture that places humans and their societal values at the center of the discussion. By involving people from all parts of the ecosystem of information, this new approach allows us to realize the benefits of data-driven algorithmic decision making while minimizing the risks and unintended consequences. It proposes a software architecture and legal framework for an Internet of Trusted Data that provides safe, secure access for everyone and protects against bias, unfairness, and other unintended effects. This approach addresses issues of data privacy, security, ownership, and trust by allowing insights to be extracted from data held by different people, companies, or governments without collecting, holding, or revealing the underlying data. The software architecture, called Open Algorithms, or OPAL, sends algorithms to databases rather than copying or sharing data. The data is protected by existing firewalls; only encrypted results are shared. Data never leaves its repository. A higher security architecture, ENIGMA, built on OPAL, is fully encrypted.

    Contributors Michiel Bakker, Yves-Alexandre de Montjoye, Daniel Greenwood, Thomas Hardjoni, Jake Kendall, Cameron Kerry, Bruno Lepri, Alexander Lipton, Takeo Nishikata, Alejandro Noriega-Campero, Nuria Oliver, Alex Pentland, David L. Shrier, Jacopo Staiano, Guy Zyskind

    An MIT Connection Science and Engineering Book

    • Paperback $30.00